#### a. Show by using Mathematical Induction that Q.2

$$\sum_{i=1}^{n} i^{2} = \frac{n \cdot (n+1) \cdot (2 \cdot n + 1)}{6}$$

#### Answer:

AC68

Solution: BASIS: At n = 1, the LHS is  $\sum_{i=1}^{1} i^2 = 1^2 = 1$ . Likewise, the RHS is  $\frac{1 \cdot 2 \cdot (2 \cdot 1 + 1)}{6} = 1$ . Since the LHS and RHS are equal, the basis is proven.

INDUCTIVE STEP: Assume that for some  $k \ge 1$ ,

$$\begin{split} \sum_{i=1}^{k} i^2 &= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} \\ \cdot \sum_{i=1}^{k+1} i^2 &= \sum_{i=1}^{k} i^2 + (k+1)^2 \\ &= \frac{k \cdot (k+1) \cdot (2 \cdot k+1)}{6} + (k+1)^2, \text{ using the inductive hypothesis} \\ &= \frac{(k+1)}{6} \cdot [k \cdot (2 \cdot k+1) + 6 \cdot (k+1)] \\ &= \frac{(k+1)}{6} \cdot [2 \cdot k^2 + k + 6 \cdot k + 6] \\ &= \frac{(k+1)}{6} \cdot [2 \cdot k^2 + 7 \cdot k + 6] \\ &= \frac{(k+1)}{6} \cdot [2 \cdot k^2 + 4 \cdot k + 3 \cdot k + 6] \\ &= \frac{(k+1)}{6} \cdot [2 \cdot k(k+2) + 3 \cdot (k+2)] \\ &= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot k+3)}{6} \end{split}$$

- b. Define language. Let  $\sum = \{0; 1\}$  denote an alphabet. Enumerate five elements of the following languages:
- (i) Even binary numbers,

**Answer:** Even binary numbers: {0; 10; 100; 110; 1000}

(ii) The number of zeros is not equal to the number of ones in a binary string.

**Answer:** The number of zeros is not equal to the number of ones in a binary string: {0; 1; 100; 110; 001}

### (iii) The number of zeros is exactly one greater than the number of ones.

**Answer:** The number of zeros is exactly one greater than the number of ones: {0; 100; 001; 010; 00011}

### Q.3 a. Construct DFA to accept all possible strings of 0's and 1's which does not contain 011 as a substring.

#### Answer:

| State                 | δ                     |                       |
|-----------------------|-----------------------|-----------------------|
|                       | 0                     | 1                     |
| $\rightarrow * q_0$   | $q_1$                 | $\mathbf{q}_0$        |
| * $q_1$               | $q_2$                 | $q_2$                 |
| * $q_2$               | $q_1$                 | <b>q</b> <sub>3</sub> |
| <b>q</b> <sub>3</sub> | <b>q</b> <sub>3</sub> | <b>q</b> <sub>3</sub> |

b. Obtain DFA from the following NFA defined by transition table given below:

| State             | δ                   |                |           |  |
|-------------------|---------------------|----------------|-----------|--|
| State             | 0                   | 1              | 2         |  |
| $\rightarrow q_0$ | $\{q_0, q_1, q_2\}$ | $\{q_1, q_2\}$ | $\{q_2\}$ |  |
| q <sub>1</sub>    | Φ                   | $\{q_1, q_2\}$ | $\{q_2\}$ |  |
| *q <sub>2</sub>   | Φ                   | Φ              | $\{q_2\}$ |  |

#### Answer:

The required DFA is  $M = (Q, \Sigma, \delta, q0, F)$ , where  $Q = \{\{q0\}, \{q0, q1, q2\}, \{q1, q1, q2\}, \{q1, q2\}, \{q2, q2\}, \{q2, q2\}, \{q3, q3\}, \{q3,$ 

q2}, {q2}},  $\Sigma = \{0, 1, 2\}$ , F = {q0, q1, q2} and transition function is defined by the transition table given below.

| State              | δ            |          |      |  |
|--------------------|--------------|----------|------|--|
|                    | 0            | 1        | 2    |  |
| $\rightarrow$ {q0} | {q0, q1, q2} | {q1, q2} | {q2} |  |
| *{q0, q1, q2}      | {q0, q1, q2} | {q1, q2} | {q2} |  |
| {q1, q2}           | Φ            | {q1, q2} | {q2} |  |
| {q2}               | Φ            | Φ        | {q2} |  |

# c. Prove that a language L is accepted by some $\epsilon$ -NFA if and only if L is accepted by some DFA.

Answer: Page Number 75 of Text Book.

### Q.4 a. Prove that if L and M are regular languages, then so is $L \cap M$

Answer: Page Number 126 of Text book.

# **b.** Define Context Free Grammar. Give Context Free Grammar that generates the following Languages:

(i)  $L = \{w \in \{0, 1\}^* | w \text{ contains more 1's than 0's} \}$ (ii)  $L = \{a^i b^j c^k | i, j, k \ge 0 \text{ and either } i = j \text{ or } j = k\}$ (iii)  $L = \{a^n u | u \in \{a, b\}^* \text{ and } |u| = n, n \ge 0\}$ 

Answer: Page Number 159 of Text Book.

- (ii)  $L = \{ aibjck | i, j, k \ge 0 and either i = j or j = k \}$

$$\begin{split} S &\rightarrow AC \mid B \\ A &\rightarrow aAb \mid e \\ C &\rightarrow cC \mid e \\ B &\rightarrow aB \mid D \\ D &\rightarrow bDc \mid \epsilon \end{split}$$

(iii) L={ $a^{n}u|u \in \{a, b\}^{*}$  and  $|u|=n, n \ge 0$ }

$$S \rightarrow aSa \mid aSb \mid e$$

Q.5 a. Write a regular expression for the language represented by the Finite Automata given in the below figure:



### AC68

### Answer:

After eliminating state B



After eliminating state C



The final RE is  $(ab + (b + aa) \cdot (ba)^* \cdot bb)^*$ 

### Q.6 a. Design a PDA to accept the language $L = \{a^i b^j c^k : i + j = k; i \ge 0, j \ge 0\}$

### Answer:

PDA M = ({q<sub>0</sub>, q<sub>1</sub>, q<sub>2</sub>, q<sub>3</sub>}, {a, b, c}, {a, b, Z<sub>0</sub>},  $\delta$ , q<sub>0</sub>, Z<sub>0</sub>, {q<sub>3</sub>}), where  $\delta$  is defined by following rules:

$$\begin{split} \delta(q_0, a, Z_0) &= \{(q_0, aZ_0)\}\\ \delta(q_0, a, a) &= \{(q_0, aa)\}\\ \delta(q_0, b, a) &= \{(q_1, ba)\}\\ \delta(q_0, b, Z_0) &= \{(q_1, bZ_0)\}\\ \delta(q_0, c, a) &= \{(q_2, \epsilon)\}\\ \delta(q_1, b, b) &= \{(q_1, bb)\}\\ \delta(q_1, c, b) &= \{(q_2, \epsilon)\} \end{split}$$

$$\begin{split} \delta(q_2, c, b) &= \{(q_2, \varepsilon)\}\\ \delta(q_2, c, a) &= \{(q_2, \varepsilon)\}\\ \delta(q_2, \varepsilon, Z_0) &= \{(q_3, \varepsilon)\}\\ \delta(q_0, \varepsilon, Z_0) &= \{(q_3, \varepsilon)\}\\ \delta(q, x, Y) &= \phi \quad \text{for all other possibilities} \end{split}$$

b. Consider the grammar G = (V, T, S, P), with productions defined by:  $S \rightarrow aSbS \mid bSaS \mid \epsilon$ . Is G ambiguous? If so, prove and also provide the unambiguous grammar for the same language.

### Answer:

G is ambiguous, since the string w = abab has two distinct leftmost derivations:

(i)  $S \Rightarrow aSbS \Rightarrow abSaSbS \Rightarrow abaSbS \Rightarrow ababS \Rightarrow abab, and$ 

(ii)  $S \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSbS \Rightarrow ababS$ 

L(G) is the language of strings over {a, b}, in which the number of as is equal to the number of bs. An unambiguous grammar for this language is given by: G' = (V, T, S, P), where  $V = \{S\}, T = \{a, b\}, S = S$ , and  $P = \{S \rightarrow aSb | bSa | SS | \epsilon\}$ .

### c. What is the relationship between Deterministic Push Down Automata, regular Languages and Context Free Languages?

#### Answer:

The languages accepted by DPDA's by final state properly include the regular language, but are properly included in the CFL

### Q.7 a. Convert the following simplified grammar to CNF $G = (\{S, A, B\}, \{a, b\}, \{S \rightarrow ASB \mid AB, A \rightarrow aAS \mid a \mid aA, B \rightarrow SbS \mid bb \mid Sb \mid bS \mid b \mid aAS \mid a \mid aA \}, S)$

### Answer:

Step 1: Add productions of the form  $A \rightarrow BC$  and  $A \rightarrow a$  to P'. So P' = {S  $\rightarrow AB$ ,  $A \rightarrow a$ ,  $B \rightarrow b \mid a$ }

Step 2: Eliminate terminals from RHS of the other productions

 $A \rightarrow aAS \text{ to } A \rightarrow C_aAS \text{ and } C_a \rightarrow a$   $A \rightarrow aA \text{ to } A \rightarrow C_aA$   $B \rightarrow SbS \text{ to } B \rightarrow SC_bS \text{ and } C_b \rightarrow b$   $B \rightarrow bb \text{ to } B \rightarrow C_bC_b$   $B \rightarrow bS \text{ to } B \rightarrow C_bS$   $B \rightarrow Sb \text{ to } B \rightarrow SC_b$  $B \rightarrow aAS \text{ to } B \rightarrow C_aAS$  AC68

### $B \rightarrow aA$ to $B \rightarrow C_aA$

Add productions of the form  $A \rightarrow BC$  to P'. So P' = {S  $\rightarrow AB, A \rightarrow a | C_aA, B \rightarrow C_bC_b | C_bS | SC_b | C_aA | b | a, C_a \rightarrow a, C_b \rightarrow b$  }

Step 3: Reduce the RHS of the productions with more than 2 variables to the form of  $A \rightarrow BC$ .

 $A \rightarrow C_aAS \text{ to } A \rightarrow C_aC_1 \text{ and } C_1 \rightarrow AS$   $B \rightarrow SC_bS \text{ to } B \rightarrow SC_2 \text{ and } C_2 \rightarrow C_bS$  $B \rightarrow C_aAS \text{ to } B \rightarrow C_aC_3 \text{ and } C_3 \rightarrow AS$ 

Adding these productions to P' = {  $S \rightarrow AB$ ,  $A \rightarrow a | C_aA | C_aC_1, B \rightarrow C_bC_b | C_bS | SC_b | C_aA | SC_2 | C_aC_3 | b | a, C_a \rightarrow a, C_b \rightarrow b, C_1 \rightarrow AS, C_2 \rightarrow C_bS, C_3 \rightarrow AS$ 

The grammar in CNF form G' = (V', {a, b}, P', S) V' = {S, A, B, C<sub>a</sub>, C<sub>b</sub>, C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>} P' = { S  $\rightarrow$  AB, A  $\rightarrow$  a | C<sub>a</sub>A | C<sub>a</sub>C<sub>1</sub>, B  $\rightarrow$  C<sub>b</sub>C<sub>b</sub> | C<sub>b</sub>S| SC<sub>b</sub> | C<sub>a</sub>A | SC<sub>2</sub>| C<sub>a</sub>C<sub>3</sub> | b | a, C<sub>a</sub> $\rightarrow$  a, C<sub>b</sub> $\rightarrow$  b, C<sub>1</sub> $\rightarrow$  AS, C<sub>2</sub> $\rightarrow$  C<sub>b</sub>S, C<sub>3</sub> $\rightarrow$  AS}

### b. State Pumping Lemma for Context Free Language. Show that the language, $L = \{0^{i}1^{j}2^{i}3^{j} | i \ge 1, j\ge 1\}$ is not a Context Free Language.

#### Answer:

Page Number 258 of Text Book.

- Assume L is CFL
- Pick  $z = uvwxy = 0^n 1^n 2^n 3^n$ ,  $|vwx| \le n \& vx \ne \varepsilon$
- vwx can consist of a substring of one symbol
  - uwy has n of 3 different symbols and fewer than n of 4<sup>th</sup> symbol. Then uwy is not in L
- vwx can consist of 2 adjacent symbols, say 1 & 2
  - uwy is missing some 1's or 2's and uwy is not in L
- L is not CFL
- Q.8 a. Design a Turing Machine to accept the language  $L = \{w \in \{a, b\}^* | w \text{ is a palindrome}\}$ . Give traces of the machine for the strings "baab" and "ababa"

| Design of TM |            |            |            |            |            |  |
|--------------|------------|------------|------------|------------|------------|--|
| state        | А          | b          | Х          | Y          | В          |  |
| → q0         | (q1, X, R) | (q2, Y, R) | (q6, X, R) | (q6, Y, R) | (q6, B, R) |  |
| q1           | (q1, a, R) | (q1, b, R) | (q3, X, L) | (q3, Y, L) | (q3, B, L) |  |
| q2           | (q2, a, R) | (q2, b, R) | (q4, X, L) | (q4, Y, L) | (q4, B, L) |  |
| q3           | (q5, X, L) | -          | (q6, X, R) | (q6, Y, R) | -          |  |
| q4           | -          | (q5, Y, L) | (q6, X, R) | (q6, Y, R) | -          |  |
| q5           | (q5, a, L) | (q5, b, L) | (q0, X, R) | (q0, Y, R) | -          |  |
| *q6          | -          | -          | -          | -          | -          |  |

### Answer:

Trace of "baab"

q0baab |--- Yq2aab |--- Yaq2ab |--- Yaaq2b |--- Yaabq2 |--- Yaaq4b |--- Yaq5aY |--- Yq5aaY |--- Yq0aaY |--- YXq1aY |--- YXq1aY |--- YXq3aY |--- Yq5XXY |--- YXq0XY |--- YXXq6Y (accept)

Similarly for the traces of "ababa"

# **b.** Prove that every language accepted by a multitape Turing Machine is recursively Enumerable.

Answer: Page Number 316 of Text Book.

### **Q.9** Define the following languages with diagram:

### (iii) Recursive

Answer: Page Number 349 of Text Book

### **TEXT BOOK**

Introduction to Automata Theory, Languages & Computation, John E Hopcraft, Rajeev Motwani, Jeffery D. Ullman, Pearson Education, 3<sup>rd</sup> Edition, 2006