Q. 2 a. Show by using Mathematical Induction that

$$
\sum_{i=1}^{n} i^{2}=\frac{n \cdot(n+1) \cdot(2 \cdot n+1)}{6}
$$

Answer:

Solution: BASIS: At $n=1$, the LHS is $\sum_{i=1}^{1} i^{2}=1^{2}=1$. Likewise, the RHS is $\frac{1 \cdot 2 \cdot(2 \cdot 1+1)}{6}=1$. Since the LHS and RHS are equal, the basis is proven.
Inductive Step: Assume that for some $k \geq 1$,

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =\sum_{i=1}^{k} i^{2}=\frac{k \cdot(k+1) \cdot(2 \cdot k+1)}{6} i^{2}+(k+1)^{2} \\
& =\frac{k \cdot(k+1) \cdot(2 \cdot k+1)}{6}+(k+1)^{2}, \text { using the inductive hypothesis } \\
& =\frac{(k+1)}{6} \cdot[k \cdot(2 \cdot k+1)+6 \cdot(k+1)] \\
& =\frac{(k+1)}{6} \cdot\left[2 \cdot k^{2}+k+6 \cdot k+6\right] \\
& =\frac{(k+1)}{6} \cdot\left[2 \cdot k^{2}+7 \cdot k+6\right] \\
& =\frac{(k+1)}{6} \cdot\left[2 \cdot k^{2}+4 \cdot k+3 \cdot k+6\right] \\
& =\frac{(k+1)}{6} \cdot[2 \cdot k(k+2)+3 \cdot(k+2)] \\
& =\frac{(k+1) \cdot(k+2) \cdot(2 \cdot k+3)}{6}
\end{aligned}
$$

b. Define language. Let $\sum=\{0 ; 1\}$ denote an alphabet. Enumerate five elements of the following languages:
(i) Even binary numbers,

Answer: Even binary numbers: $\{0 ; 10 ; 100 ; 110 ; 1000\}$
(ii) The number of zeros is not equal to the number of ones in a binary string.

Answer: The number of zeros is not equal to the number of ones in a binary string: $\{0$; $1 ; 100 ; 110 ; 001\}$
(iii) The number of zeros is exactly one greater than the number of ones.

Answer: The number of zeros is exactly one greater than the number of ones: $\{0 ; 100$; 001; 010; 00011\}
Q. 3 a. Construct DFA to accept all possible strings of 0's and 1's which does not contain 011 as a substring.

Answer:

State		δ	
	0	1	
$\rightarrow{ }^{*} \mathrm{q}_{0}$	q_{1}	q_{0}	
${ }^{*} \mathrm{q}_{1}$	q_{2}	q_{2}	
${ }^{*} \mathrm{q}_{2}$	q_{1}	q_{3}	
q_{3}	q_{3}	q_{3}	

b. Obtain DFA from the following NFA defined by transition table given below:

State	δ		
	0	1	2
$\rightarrow \mathrm{q}_{0}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{2}\right\}$
q_{1}	Φ	$\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{2}\right\}$
${ }^{*} \mathrm{q}_{2}$	Φ	Φ	$\left\{\mathrm{q}_{2}\right\}$

Answer:

The required $D F A$ is $M=(Q, \Sigma, \delta, q 0, F)$, where $Q=\{\{q 0\},\{q 0, q 1, q 2\}$, $\{q 1$, $\mathrm{q} 2\},\{\mathrm{q} 2\}\}, \Sigma=\{0,1,2\}, \mathrm{F}=\{\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2\}$ and transition function is defined by the transition table given below.

State	δ		
	0	1	2
\rightarrow qq0\}	\{q0, q1, q2 \}	\{q1, q2 \}	\{q2\}
* \{q0, q1, q2\}	\{q0, q1, q2\}	\{q1, q2\}	\{q2\}
\{q1, q2 \}	Φ	\{q1, q2\}	\{q2\}
\{q2\}	Φ	Φ	\{q2\}

c. Prove that a language L is accepted by some ε-NFA if and only if L is accepted by some DFA.

Answer: Page Number 75 of Text Book.
Q. 4 a. Prove that if L and M are regular languages, then so is $L \cap M$

Answer: Page Number 126 of Text book.
b. Define Context Free Grammar. Give Context Free Grammar that generates the following Languages:
(i) $\mathrm{L}=\left\{\mathrm{w} \in\{0,1\}^{*} \mid \mathrm{w}\right.$ contains more 1's than 0 's $\}$
(ii) $L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and either $i=j$ or $\left.j=k\right\}$
(iii) $L=\left\{a^{n} u \mid u \in\{a, b\}^{*}\right.$ and $\left.|u|=n, n \geq 0\right\}$

Answer: Page Number 159 of Text Book.
(i) $\mathrm{L}=\left\{\mathrm{w} \in\{0,1\}^{*} \mid \mathrm{w}\right.$ contains more $1^{\prime} \mathrm{s}$ than 0 's $\}$

$$
\mathrm{S} \rightarrow 0 \mathrm{~S} 1 \mid \text { 1S0 }|\mathrm{S} 01| \mathrm{S} 10|01 \mathrm{~S}| 10 \mathrm{~S}|\mathrm{~S}| 1
$$

(ii) $\mathrm{L}=\{$ aibjck $\mid \mathrm{i}, \mathrm{j}, \mathrm{k} \geq 0$ and either $\mathrm{i}=\mathrm{j}$ or $\mathrm{j}=\mathrm{k}\}$

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AC} \mid \mathrm{B} \\
& \mathrm{~A} \rightarrow \mathrm{aAb} \mid \mathrm{e} \\
& \mathrm{C} \rightarrow \mathrm{cC} \mid \mathrm{e} \\
& \mathrm{~B} \rightarrow \mathrm{aB} \mid \mathrm{D} \\
& \mathrm{D} \rightarrow \mathrm{bDc} \mid \varepsilon
\end{aligned}
$$

(iii) $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{u} \mid \mathrm{u} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$ and $\left.|\mathrm{u}|=\mathrm{n}, \mathrm{n} \geq 0\right\}$

$$
S \rightarrow \mathrm{aSa}|\mathrm{aSb}| \mathrm{e}
$$

Q. 5 a. Write a regular expression for the language represented by the Finite Automata given in the below figure:

Answer:

After eliminating state B

After eliminating state C

The final RE is $\left(\mathrm{ab}+(\mathrm{b}+\mathrm{aa}) \cdot(\mathrm{ba})^{*} \cdot \mathrm{bb}\right)^{*}$
Q. 6 a. Design a PDA to accept the language $L=\left\{a^{\mathbf{i}} b^{j} c^{\mathbf{k}}: i+j=k ; i \geq 0, j \geq 0\right\}$

Answer:

PDA $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b, c\},\left\{a, b, Z_{0}\right\}, \delta, q_{0}, Z_{0},\left\{q_{3}\right\}\right)$, where δ is defined by following rules:

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{aZ}_{0}\right)\right\} \\
& \delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{aa}\right)\right\} \\
& \delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{1}, \mathrm{ba}\right)\right\} \\
& \delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{1}, b \mathrm{Z}_{0}\right)\right\} \\
& \delta\left(\mathrm{q}_{0}, \mathrm{c}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{2}, \varepsilon\right)\right\} \\
& \delta\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{~b}\right)=\left\{\left(\mathrm{q}_{1}, \mathrm{bb}\right)\right\} \\
& \delta\left(\mathrm{q}_{1}, \mathrm{c}, \mathrm{~b}\right)=\left\{\left(\mathrm{q}_{2}, \varepsilon\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \delta\left(\mathrm{q}_{2}, \mathrm{c}, \mathrm{~b}\right)=\left\{\left(\mathrm{q}_{2}, \varepsilon\right)\right\} \\
& \delta\left(\mathrm{q}_{2}, \mathrm{c}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{2}, \varepsilon\right)\right\} \\
& \delta\left(\mathrm{q}_{2}, \varepsilon, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{3}, \varepsilon\right)\right\} \\
& \delta\left(\mathrm{q}_{0}, \varepsilon, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{3}, \varepsilon\right)\right\} \\
& \delta(\mathrm{q}, \mathrm{x}, \mathrm{Y})=\phi \quad \text { for all other possibilities }
\end{aligned}
$$

b. Consider the grammar $G=(V, T, S, P)$, with productions defined by: $\mathbf{S} \rightarrow \mathbf{a S b S}|\mathbf{b S a S}| \varepsilon$. Is G ambiguous? If so, prove and also provide the unambiguous grammar for the same language.

Answer:

G is ambiguous, since the string $\mathrm{w}=\mathrm{abab}$ has two distinct leftmost derivations:
(i) $\mathrm{S} \Rightarrow \mathrm{aSbS} \Rightarrow \mathrm{abSaSbS} \Rightarrow$ abaSbS \Rightarrow ababS \Rightarrow abab, and
(ii) $\mathrm{S} \Rightarrow$ aSbS \Rightarrow abS \Rightarrow abaSbS \Rightarrow ababS \Rightarrow abab.
$\mathrm{L}(\mathrm{G})$ is the language of strings over $\{\mathrm{a}, \mathrm{b}\}$, in which the number of as is equal to the number of bs. An unambiguous grammar for this language is given by: $\mathrm{G}^{\prime}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$, where $\mathrm{V}=\{\mathrm{S}\}, \mathrm{T}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}=\mathrm{S}$, and $\mathrm{P}=\{\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{bSa}| \mathrm{SS} \mid \varepsilon\}$.

c. What is the relationship between Deterministic Push Down Automata, regular Languages and Context Free Languages?

Answer:

The languages accepted by DPDA's by final state properly include the regular language, but are properly included in the CFL

Q. 7 a. Convert the following simplified grammar to CNF

$$
\begin{aligned}
& G=(\{S, A, B\},\{a, b\},\{S \rightarrow A S B|A B, \quad A \rightarrow a A S| a|a A, \quad B \rightarrow S b S| \\
& b b|S b| b S|b| a A S|a| a A\}, S)
\end{aligned}
$$

Answer:

Step 1: Add productions of the form $\mathrm{A} \rightarrow \mathrm{BC}$ and $\mathrm{A} \rightarrow$ a to P^{\prime}. So $\mathrm{P}^{\prime}=\{\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{a}$, $B \rightarrow b \mid a\}$

Step 2: Eliminate terminals from RHS of the other productions

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{aAS} \text { to } \mathrm{A} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{AS} \text { and } \mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{aA} \text { to } \mathrm{A} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{~A} \\
& \mathrm{~B} \rightarrow \mathrm{SbS} \text { to } \mathrm{B} \rightarrow \mathrm{SC}_{\mathrm{b}} \mathrm{~S} \text { and } \mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{~b} \\
& \mathrm{~B} \rightarrow \mathrm{bb} \text { to } \mathrm{B} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}} \\
& \mathrm{~B} \rightarrow \mathrm{bS} \text { to } \mathrm{B} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{~S} \\
& \mathrm{~B} \rightarrow \mathrm{Sb} \text { to } \mathrm{B} \rightarrow \mathrm{SC}_{\mathrm{b}} \\
& \mathrm{~B} \rightarrow \mathrm{aAS} \text { to } \mathrm{B} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{AS}
\end{aligned}
$$

$\mathrm{B} \rightarrow \mathrm{aA}$ to $\mathrm{B} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{A}$
Add productions of the form $\mathrm{A} \rightarrow \mathrm{BC}$ to P^{\prime}. So $\mathrm{P}^{\prime}=\left\{\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{a} \mid \mathrm{C}_{\mathrm{a}} \mathrm{A}, \mathrm{B} \rightarrow\right.$ $\left.\mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}}\left|\mathrm{C}_{\mathrm{b}} \mathrm{S}\right| \mathrm{SC}_{\mathrm{b}}\left|\mathrm{C}_{\mathrm{a}} \mathrm{A}\right| \mathrm{b} \mid \mathrm{a}, \mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}, \mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}\right\}$

Step 3: Reduce the RHS of the productions with more than 2 variables to the form of $\mathrm{A} \rightarrow \mathrm{BC}$.
$\mathrm{A} \rightarrow \mathrm{C}_{\mathrm{a}}$ AS to $\mathrm{A} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{C}_{1}$ and $\mathrm{C}_{1} \rightarrow \mathrm{AS}$
$\mathrm{B} \rightarrow \mathrm{SC}_{\mathrm{b}} \mathrm{S}$ to $\mathrm{B} \rightarrow \mathrm{SC}_{2}$ and $\mathrm{C}_{2} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{S}$
$\mathrm{B} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{AS}$ to $\mathrm{B} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{C}_{3}$ and $\mathrm{C}_{3} \rightarrow \mathrm{AS}$
Adding these productions to $\mathrm{P}^{\prime}=\left\{\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{a}\left|\mathrm{C}_{\mathrm{a}} \mathrm{A}\right| \mathrm{C}_{\mathrm{a}} \mathrm{C}_{1}, \mathrm{~B} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}}\left|\mathrm{C}_{\mathrm{b}} \mathrm{S}\right|\right.$ $\left.\mathrm{SC}_{\mathrm{b}}\left|\mathrm{C}_{\mathrm{a}} \mathrm{A}\right| \mathrm{SC}_{2}\left|\mathrm{C}_{\mathrm{a}} \mathrm{C}_{3}\right| \mathrm{b} \mid \mathrm{a}, \mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}, \mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}, \mathrm{C}_{1} \rightarrow \mathrm{AS}, \mathrm{C}_{2} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{S}, \mathrm{C}_{3} \rightarrow \mathrm{AS}\right\}$

The grammar in CNF form $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}^{\prime}, \mathrm{S}\right)$
$V^{\prime}=\left\{S, A, B, C_{a}, C_{b}, C_{1}, C_{2}, C_{3}\right\}$
$\mathrm{P}^{\prime}=\left\{\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{a}\left|\mathrm{C}_{\mathrm{a}} \mathrm{A}\right| \mathrm{C}_{\mathrm{a}} \mathrm{C}_{1}, \mathrm{~B} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}}\left|\mathrm{C}_{\mathrm{b}} \mathrm{S}\right| \mathrm{SC}_{\mathrm{b}}\left|\mathrm{C}_{\mathrm{a}} \mathrm{A}\right| \mathrm{SC}_{2}\left|\mathrm{C}_{\mathrm{a}} \mathrm{C}_{3}\right| \mathrm{b} \mid \mathrm{a}\right.$, $\left.\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}, \mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}, \mathrm{C}_{1} \rightarrow \mathrm{AS}, \mathrm{C}_{2} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{S}, \mathrm{C}_{3} \rightarrow \mathrm{AS}\right\}$

b. State Pumping Lemma for Context Free Language. Show that the language, $L=\left\{0^{i} 1^{j} 2^{i} 3^{j} \mid i \geq 1, j \geq 1\right\}$ is not a Context Free Language.

Answer:

Page Number 258 of Text Book.

- Assume L is CFL
- Pick z = uvwxy $=0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}} 3^{\mathrm{n}},|v w x| \leq \mathrm{n} \& \mathrm{vx} \neq \varepsilon$
- vwx can consist of a substring of one symbol
- uwy has n of 3 different symbols and fewer than n of $4^{\text {th }}$ symbol. Then uwy is not in L
- \quad vwx can consist of 2 adjacent symbols, say $1 \& 2$
- uwy is missing some 1's or 2's and uwy is not in L
- L is not CFL
Q. 8 a. Design a Turing Machine to accept the language $L=\left\{w \in\{a, b\}^{*} \mid \mathbf{w}\right.$ is a palindrome\}. Give traces of the machine for the strings "baab" and "ababa"

Answer:

Design of TM

state	A	b	X	Y	B
$\rightarrow \mathrm{q} 0$	(q1, X, R)	(q2, Y, R)	(q6, X, R)	(q6, Y, R)	(q6, B, R)
q1	(q1, a, R)	(q1, b, R)	(q3, X, L)	(q3, Y, L)	(q3, B, L)
q2	(q2, a, R)	(q2, b, R)	(q4, X, L)	(q4, Y, L)	(q4, B, L)
q3	(q5, X, L)	-	(q6, X, R)	(q6, Y, R)	-
q4	-	(q5, Y, L)	(q6, X, R)	(q6, Y, R)	-
q5	(q5, a, L)	(q5, b, L)	(q0, X, R)	(q0, Y, R)	-
*q6	-	-	-	-	-

Trace of "baab"

$$
\begin{aligned}
& \text { q0baab } \vdash \text { Yq2aab } \vdash \text { Yaq2ab } \vdash \text { Yaaq2b }- \text { Yaabq2 } \vdash \text { Yaaq4b } \vdash \text { Yaq5aY } \\
& \vdash \text { Yq5aaY }- \text { q5YaaY } \vdash \text { Yq0aaY } \vdash \text { YXq1aY } \vdash \text { YXaq1Y } \vdash Y X q 3 a Y \\
& \vdash \text { Yq5XXY }-Y X q 0 X Y \vdash \text { YXXq6Y (accept) }
\end{aligned}
$$

Similarly for the traces of "ababa"
b. Prove that every language accepted by a multitape Turing Machine is recursively Enumerable.

Answer: Page Number 316 of Text Book.
Q. 9 Define the following languages with diagram:
(iii) Recursive

Answer: Page Number 349 of Text Book

TEXT BOOK

Introduction to Automata Theory, Languages \& Computation, John E Hopcraft, Rajeev Motwani, Jeffery D. Ullman, Pearson Education, $3^{\text {rd }}$ Edition, 2006

